Deciding Correctness for

Simple Transducer Networks

Tom J. Ameloot

Hasselt University &
Transnational University of Limburg



Introduction

Cloud computing, declarative networking

Asynchronous communication

Correctness (determinacy)

Formalizations



Ensuring Correctness

Constructive approach
- enforced through coordination
- emerging correctness (CRDTs, monotone programs)

Decision procedure



Formalize Distributed Programs

Relational transducer = collection of
queries

local query language, e.g. UCQ™



Formalize Distributed Programs

Relational transducer = collection of Transducer network

queries ‘

- heterogeneous

Run

- nondeterministic

local query language, e.g. UCQ™

- finite

~ infinite —



Confluence [ICDT 2012]

Formalize correctness as
confluence:

—p

Confluence semantics: collect
outputs over all finite runs

Simple transducer networks:
UCQ™, recursion-free, inflationary,
static, message-bounded,
message-positive



Confluence [ICDT 2012]

Formalize correctness as
confluence:

—p

Confluence semantics: collect
outputs over all finite runs

Simple transducer networks:

UCQ™, recursion-free, inflationary,

static, message-bounded,
message-positive

Examples (single-node)
Confluent:

Amsg(U) < R(u).
Bmsg(u) < S(u).
T(u) < Amsg(u), Bmsg(u).

message join

Diffluent:



Confluence: previous results [ICDT 2012]

Deciding diffluence for simple transducer net-
works is NEXPTIME-complete.

Simple transducer networks capture the dis-

<

tributed queries expressible in UCQ ™.

@ Distributed Query

C@@ >C;@




Consistency

Formalize correctness as
consistency:

e

- All infinite fair runs ...
- Implies confluence
- More practically relevant

Consistency semantics: output of
arbitrary infinite fair run



Consistency

Formalize correctness as
consistency:

e

- All infinite fair runs ...
- Implies confluence
- More practically relevant

Consistency semantics: output of

arbitrary infinite fair run

Examples (single-node)
Confluent but inconsistent:

Amsg () < R(u).
Binsg(u) = S(u)-
T(u) 4= Amsg(u), Bmsg(u)-

Consistent:

Amsg (1) < R(u).
Binsg(u) <= S(u); Amsg ().
T(u) = Bimsg(v)-

message chain, fairness



Consistency: new results

Deciding inconsistency for simple transducer
networks is NEXPTIME-complete.

consistency seemed harder

Consistent simple transducer networks, under
the consistency semantics, capture all dis-
tributed queries expressible in UCQ™.

consistency semantics is simpler



Decision Procedure: sketch

Deciding inconsistency
Input: simple transducer network

’:P repeatable
¢ |

o

- If accept: clearly inconsistent
- If inconsistent: projection of infinite runs (difficult)
- NEXPTIME procedure (also lower bound)



Expressivity: sketch
UCQ™ upper bound through confluence upper bound

10



Expressivity: sketch

UCQ™ upper bound through confluence upper bound
UCQ™ lower bound illustrated for distributed query

1.T(u) < 1.A(u),2.B(u, v),=3.C(v).

10



Expressivity: sketch

UCQ™ upper bound through confluence upper bound
UCQ™ lower bound illustrated for distributed query

1.T(u) < 1.A(u),2.B(u, v),=3.C(v).

M1(u) € A(u)

T(u) € M3(u,v). M2(u,v) € M1(u), B(u,v).

M3(u,v) € M2(u,v), =C(v).

- recursion-free
- chain tolerates message delays
10



Directions for Further Work

More complete picture: confluence and consistency

Unfortunate: strong restrictions, yet high complexity

Better:
- constructive approach to correctness
- coordinated vs emerging

11



Thank you



